Nanotechnology: NSF CAREER award to study microstructures of starfish skeletons

IMAGE

IMAGE: Ling Li
view more 

Credit: Virginia Tech

Ling Li, an assistant professor of mechanical engineering in the College of Engineering, has received a National Science Foundation Faculty Early Career Development CAREER award to support research to study the structural designs and formation mechanisms of biomineralized architected materials.

The $520,000 five-year award will support Li’s research of the design and formation of biomineralized starfish skeletons.

“The internal microscopic structures of many biomineral-based structures found in organisms have extremely intricate 3D organizations,” Li said. “They show remarkable mechanical strength, durability, and efficiency, despite the fact that they are made of intrinsically brittle minerals and are often highly porous.”

Li’s research group focuses on the understanding the mechanical and multifunctional design of a variety of biological materials, such as low-density biological porous structures and tough biocomposites. His research also aims to develop new materials by utilizing the design strategies learned from biological material systems. For example, his group recently developed a chiton mollusk-inspired armor that provides simultaneous mechanical protection and flexibility.

“Currently, we have limited knowledge in explaining how biominerals’ complex 3D microstructures are controlled and how they are related to their mechanical properties. By using the biomineralized skeleton in a starfish as a model system, we aim to quantitatively characterize its 3D network-like microstructure, the underlying formation mechanisms as well as its mechanical significance,” he said.

Starfish skeletons contain hundreds of millimeter-sized mineralized elements known as ossicles, which are embedded within the soft body of the starfish. This skeletal design allows the starfish to be flexible in motion and stiff when required.

“Ossicles are characterized by their lattice-like porous microstructure, which is based on a single-crystalline calcite, which makes them lightweight, strong, and damage tolerant,” Li said. “The new knowledge gained from this study will provide us better understanding of the 3D structural evolution processes for echinoderms, or possibly even other invertebrate and vertebrate biomineralized tissues.”

Li said the work will provide lessons on the design and fabrication of synthetic low-density materials.

In addition to the CAREER Award, Li received the 2018 Air Force Office of Research Young Faculty Award, the 2019 MIT Technology Review TR35 China Award, and the 2019 College of Engineering Dean’s Award for Outstanding New Assistant Professor.

###

Severskiy.com

Similar Articles

Comments

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Study: Effectiveness of cloth masks depends on type of covering

Months into the COVID-19 pandemic, wearing a mask while out in public has become the recommended practice. However, many still question the effectiveness of...

Archaeology: Cooling of Earth caused by eruptions, not meteors

IMAGE: Workers excavating Hall's Cave in Central Texas ...

Nanotechnology: Sharing a secret…the quantum way

IMAGE: An artistic impression sharing a secret using structured...

Medicine: Insight on novel genetic approaches to metabolic liver diseases

DETROIT - Diabetes, obesity and nonalcoholic fatty liver disease (NAFLD) are all common diseases that can lead to serious health implications. NAFLD affects over...

Diseases: Targetable biological mechanisms implicated in emergent psychiatric conditions associated with SARS-CoV-2

What The Viewpoint Says: Targetable biological mechanisms implicated in emergent psychiatric conditions associated with SARS-CoV-2 infection are discussed in this Viewpoint. Authors: Teodor T. Postolache, M.D., of...

Science: Policies to mitigate wildfire impacts have public health implications, amplified amid COVID

As the western United States enters the 2020 wildfire season with anticipated above normal significant fire potential, a new report from Physicians, Scientists,...