Medicine: Scientists use a Teflon pipe to make a cheap, simple reactor for silica particle synthesis

IMAGE

IMAGE: Experimental set-up of the microfluidic mixer for the continuous synthesis of SiO2 particles.
view more 

Credit: Yang Hui

Researchers in Australia and China have proposed an innovative and cost-effective new method for creating silica beads, which have a number of key uses, ranging from nanomedicine and bioimaging to the production of paper and polished concrete.

The synthesis of silica particles for experimental and industrial uses began in the 1960s, and usually takes place in large batches, where controlled doping to induce functionality is difficult.

Control of the synthesis parameters can be achieved through costly and time-consuming small-scale microfluidic reactors that require photolithography, etching, bonding and injection moulding, which are prone to clogging.

Now, a surprisingly simple new approach has been demonstrated, and could be adopted for various applications at a low cost and with a high degree of reliability.

Researchers at the ARC Centre of Excellence in Exciton Science, based at The University of Melbourne, and working with colleagues at South China Normal University, constructed a flow synthesis device using a polytetrafluoroethylene (PTFE) or ‘Teflon’ pipe wound around a rod and connected to two syringes.

The key to the success of this approach is a spiral channel which promotes vortex flow characteristics, and this type of fluid flow encourages extremely efficient mixing of the precursor fluids.

“When this happens you now have this very cheap and quite efficient chemical reactor,” corresponding author Dr Eser Akinoglu said.

“Once you have the fluids in a tube that is spiralled, then due to these vortexes, they mix very quickly and … the overall reaction is more homogeneous, the product is homogeneous, and the silica particles have a uniform size and shape.”

While this new mechanism is unlikely to replace industrial-scale batch manufacturing for the creation of pure silica particles, it could well rival the microfluidic approach used in synthesising silica nanoparticles for specialised, niche applications, such as silica particles ‘doped’ with colourful dyes or encapsulating quantum dots for fluorescence.

“From a material costs perspective, it’s very reasonable,” Dr Akinoglu said.

“For the future, this flow synthesis method is ideal for the introduction of new components into the reaction … you could put something else into this flow to mix together with the whole process and it will then be encapsulated in these silica particles.”

###

Severskiy.com

Similar Articles

Comments

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Study: Effectiveness of cloth masks depends on type of covering

Months into the COVID-19 pandemic, wearing a mask while out in public has become the recommended practice. However, many still question the effectiveness of...

Archaeology: Cooling of Earth caused by eruptions, not meteors

IMAGE: Workers excavating Hall's Cave in Central Texas ...

Nanotechnology: Sharing a secret…the quantum way

IMAGE: An artistic impression sharing a secret using structured...

Medicine: Insight on novel genetic approaches to metabolic liver diseases

DETROIT - Diabetes, obesity and nonalcoholic fatty liver disease (NAFLD) are all common diseases that can lead to serious health implications. NAFLD affects over...

Diseases: Targetable biological mechanisms implicated in emergent psychiatric conditions associated with SARS-CoV-2

What The Viewpoint Says: Targetable biological mechanisms implicated in emergent psychiatric conditions associated with SARS-CoV-2 infection are discussed in this Viewpoint. Authors: Teodor T. Postolache, M.D., of...

Science: Policies to mitigate wildfire impacts have public health implications, amplified amid COVID

As the western United States enters the 2020 wildfire season with anticipated above normal significant fire potential, a new report from Physicians, Scientists,...